skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghazal Arabi Darreh Dor, Ali Tivay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fluid resuscitation is an integral part of critical care for burn injury patients where the necessary infusion rate is determined based on patient’s urinary output (UO). Motivated by an increasing interest in model-based development and in silico testing of automated burn resuscitation algorithms, we are investigating mathematical modeling of hemodynamic responses to burn injury and resuscitation. The model consists of 3 main components: (1) multi-compartmental volume kinetics including vascular and interstitial fluids and the associated flow interactions, (2) burn-induced hemodynamic perturbation including alterations in tissue permeability and compliance as well as denaturation with protein release, and (3) renal regulatory function including glomerular filtration rate as a function of intravascular volume state and reabsorption function representing the UO dependence on vasopressin. Preliminary evaluation of the initial model with data collected from animals show that the model can reproduce general trend of hemodynamic responses anticipated from burn injury and resuscitation. 
    more » « less